Microbiologia Molecular
Biossíntese
Micobactérias
Metabolitos
Microbioma
Novas vias microbianas
Biossíntese de polissacarídeos micobacterianos
Biologia de micobactérias não tuberculosas
Estudos de microbioma em doenças crónicas
Apesar dos avanços monumentais da ciência nas últimas décadas, as doenças infecciosas continuam a ser uma das principais causas de morte no mundo. Essa situação é exacerbada pelo aumento galopante das resistências a fármacos antimicrobianos em sinergia com as fragilidades de populações idosas e com a prevalência crescente de doenças crónicas decorrentes de fatores ambientais e estilo de vida. Consequentemente, a investigação de doenças infecciosas e outras requer mais do que nunca uma abordagem integrada que inclua o papel do microbioma intestinal humano.
As micobactérias matam milhões de seres humanos há milénios e melhores tratamentos são mais urgentes do que nunca. Embora os genomas de Mycobacterium tuberculosis e de micobactérias não tuberculosas (MNT) estejam disponíveis há mais de 2 décadas, as funções de muitos genes permanecem por desvendar, atrasando o desenvolvimento de novas terapias. Somos diariamente expostos a MNT e esta ameaça tem sido negligenciada. Pretendemos investigar a biossíntese de polissacarídeos micobacterianos vitais para identificação de novos alvos para terapias inovadoras. Investigamos a biologia da adaptação das MNT a ambientes artificiais, em especial a redes de distribuição de água municipal onde são ubíquas mas não monitorizadas.
O nosso grupo está também focado em decifrar assinaturas microbianas no intestino disbiótico em doenças neurodegenerativas e outras doenças crónicas, com vista ao desenvolvimento de abordagens preventivas ou bacterioterapêuticas que combinem dados de NGS e as colecções de culturas únicas destes ambientes que criámos no CNC. Estamos interessados em identificar vias microbianas para a biossíntese de metabolitos neuroactivos e como eles modulam a microbiota e a susceptibilidade a doença.
Informação sobre artigos em revista, actualizada a 03-11-2024, a partir da plataforma CIÊNCIAVITAE.
Gut-first Parkinson's disease is encoded by gut dysbiome
Munoz-Pinto MFª; Pereira-Santos AR; Empadinhas N, Cardoso SM, 2024. Molecular Neurodegeneration. 19. 2024. https://doi.org/10.1186/s13024-024-00766-0 . published Molecular Neurodegeneration
Integrated processes (HPSE+scCO2) to prepare sterilized alginate-gelatine-based aerogel
Bento C, 2024. International Journal of Pharmaceutics. 662. 2024. http://dx.doi.org/10.1016/j.ijpharm.2024.124546 . 10.1016/j.ijpharm.2024.124546 . published International Journal of Pharmaceutics
Bi- and tricyclic diterpenoids: landmarks from a decade (2013–2023) in search of leads against infectious diseases
Antoniuk O, 2024. Natural Product Reports. 2024. http://dx.doi.org/10.1039/d4np00021h . 10.1039/d4np00021h . published Natural Product Reports
Bacterial extracellular vesicles at the interface of gut microbiota and immunity
Melo-Marques I, 2024. Gut Microbes. 1. 16. 2024. http://dx.doi.org/10.1080/19490976.2024.2396494 . 10.1080/19490976.2024.2396494 . published Gut Microbes
Drinking Water Microbiota, Entero-Mammary Pathways, and Breast Cancer: Focus on Nontuberculous Mycobacteria
Maranha A, 2024. Microorganisms. 7. 12. 2024. http://dx.doi.org/10.3390/microorganisms12071425 . 10.3390/microorganisms12071425 . published Microorganisms
The Gut-Brain Axis in Alzheimer’s and Parkinson’s Diseases: The Catalytic Role of Mitochondria
Candeias E, 2024. Journal of Alzheimer's Disease. 1 - 17. 2024. http://dx.doi.org/10.3233/jad-240524 . 10.3233/jad-240524 . published Journal of Alzheimer's Disease
Neuronal control of microglia through the mitochondria
Pereira-Santos AR, 2024. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2024. http://dx.doi.org/10.1016/j.bbadis.2024.167167 . 10.1016/j.bbadis.2024.167167 . published Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Nocardia cyriacigeorgica elicits gut disturbances in a leaky gut model of colitis, but not the harmful cascade leading to gut-first Parkinson’s Disease
Magalhães JD, 2024. International Journal of Molecular Sciences. 2024. https://doi.org/10.3390/ijms25063423 . published International Journal of Molecular Sciences
Gut-brain-axis impact on canine anxiety disorders: new challenges for behavioral veterinary medicine
Sacoor C, 2024. Veterinary Medicine International. 2856759. 2024. 2024. https://doi.org/10.1155/2024/2856759 . published Veterinary Medicine International
Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria
Esteves AR; Alarico S, 2023. Gut. 73 - 89. 1. 72. 2023. http://dx.doi.org/10.1136/gutjnl-2021-326023 . 10.1136/gutjnl-2021-326023 . published Gut
Parkinson's Disease: A Multisystem Disorder
Costa HN, 2023. Neuroscience Bulletin. 113 - 124. 1. 39. 2023. http://dx.doi.org/10.1007/s12264-022-00934-6 . 10.1007/s12264-022-00934-6 . published Neuroscience Bulletin
The role of bacteria-mitochondria communication in the activation of neuronal innate immunity: Implications to Parkinson's Disease
Magalhães JD, 2023. International Journal of Molecular Sciences. 5. 24. 2023. http://dx.doi.org/10.3390/ijms24054339 . 10.3390/ijms24054339 . published International Journal of Molecular Sciences
Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides
Maranha A; Pereira PJB, Empadinhas N, 2023. Communications Biology. 1. 6. 2023. https://doi.org/10.1038/s42003-023-04448-3 . 10.1038/s42003-023-04448-3 . published Communications Biology
Sustainable starch-based edible films with agrifood residues as potential carriers for the probiotic Lactobacillus rhamnosus
Coimbra P, 2023. Innovative Food Science & Emerging Technologies. 88. 2023. http://dx.doi.org/10.1016/j.ifset.2023.103452 . 10.1016/j.ifset.2023.103452 . published Innovative Food Science & Emerging Technologies
Effect of ScCO2 on the decontamination of PECs-based cryogels: a comparison with H2O steam and H2O2 nebulization methods
Bento CSA, 2023. International Journal of Pharmaceutics. 2023. http://dx.doi.org/10.1016/j.ijpharm.2023.123451 . 10.1016/j.ijpharm.2023.123451 . published International Journal of Pharmaceutics
Intestinal infection triggers mitochondria-mediated a-synuclein pathology: relevance to Parkinsons disease
Magalhães JD, 2023. Cellular and Molecular Life Sciences. 6. 80. 2023. http://dx.doi.org/10.1007/s00018-023-04819-3 . 10.1007/s00018-023-04819-3 . published Cellular and Molecular Life Sciences
Neurodegenerative Microbially-Shaped Diseases: Oxidative Stress Meets Neuroinflammation
Silva DF, 2022. Antioxidants. 11. 11. 2022. http://dx.doi.org/10.3390/antiox11112141 . 10.3390/antiox11112141 . published Antioxidants
Enzyme promiscuity in serotonin biosynthesis, from bacteria to plants and humans
Gonçalves S, 2022. Frontiers in Microbiology. 13. 2022. http://dx.doi.org/10.3389/fmicb.2022.873555 . 10.3389/fmicb.2022.873555 . published Frontiers in Microbiology
Sequential scCO2 drying and sterilisation of alginate-gelatine aerogels for biomedical applications
Bento C, 2022. The Journal of Supercritical Fluids. 184. 2022. http://dx.doi.org/10.1016/j.supflu.2022.105570 . 10.1016/j.supflu.2022.105570 . published The Journal of Supercritical Fluids
The neuromicrobiology of Parkinson's disease: A unifying theory
Muñoz-Pinto MF, 2021. Ageing Research Reviews. 70. 2021. http://dx.doi.org/10.1016/j.arr.2021.101396 . 10.1016/j.arr.2021.101396 . published Ageing Research Reviews
Improved diabetic wound healing by bovine lactoferricin is associated with relevant changes in the skin immune response and microbiota
Mouritzen MV, 2021. Molecular Therapy - Methods & Clinical Development. 726 - 739. 20. 2021. https://doi.org/10.1016/j.omtm.2021.02.008 . 10.1016/j.omtm.2021.02.008 . published Molecular Therapy - Methods & Clinical Development
The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease
Gonçalves AM, 2021. Antioxidants & Redox Signaling. 694 - 711. 8. 34. 2021. https://www.liebertpub.com/doi/10.1089/ars.2019.7997 . 10.1089/ars.2019.7997 . published Antioxidants & Redox Signaling
Editorial: Interplay Between Nutrition, the Intestinal Microbiota and the Immune System
Oriá RB, 2020. Frontiers in Immunology. 11. 2020. http://dx.doi.org/10.3389/fimmu.2020.01758 . 10.3389/fimmu.2020.01758 . published Frontiers in Immunology
Stabilization of blood for long-term storage can affect antibody-based recognition of cell surface markers
Silva MB; Färnert A, 2020. Journal of Immunological Methods. 481. 2020. http://dx.doi.org/10.1016/j.jim.2020.112792 . 10.1016/j.jim.2020.112792 . published Journal of Immunological Methods
Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation and Alzheimer's disease features in cortical neurons
Silva DF, 2020. Journal of Neuroinflammation. 332. 17. 2020. http://dx.doi.org/10.1186/s12974-020-02004-y . 10.1186/s12974-020-02004-y . published Journal of Neuroinflammation
A genuine mycobacterial thermophile: Mycobacterium hassiacum growth, survival and GpgS stability at near-pasteurization temperatures
Alarico S, 2020. Microbiology. 474 - 483. 5. 166. 2020. http://dx.doi.org/10.1099/mic.0.000898 . 10.1099/mic.0.000898 . published Microbiology
Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration
Nunes-Costa D, 2020. Frontiers in Aging Neuroscience. 12. 2020. https://doi.org/10.3389/fnagi.2020.00026 . 10.3389/fnagi.2020.00026 . published Frontiers in Aging Neuroscience
High-Quality Draft Genome Sequences of Rare Nontuberculous Mycobacteria Isolated from Surfaces of a Hospital
Tiago I, 2019. Microbiology Resource Announcements. 21. 8. 2019. https://doi.org/10.1128/MRA.00496-19 . 10.1128/MRA.00496-19 . published Microbiology Resource Announcements
The structural characterization of a glucosylglycerate hydrolase provides insights into the molecular mechanism of mycobacterial recovery from nitrogen starvation
Cereija TB, 2019. IUCrJ. 572 - 585. 4. 6. 2019. https://doi.org/10.1107/S2052252519005372 . 10.1107/S2052252519005372 . published IUCrJ
Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1-O-methyltransferase specific for 3-O-methylated mannosides
Ripoll-Rozada J; Pereira PJB; Empadinhas N, 2019. Proceedings of the National Academy of Sciences. 201813450 - 201813450. 2019. https://www.pnas.org/content/116/3/835.long . 10.1073/pnas.1813450116 . published Proceedings of the National Academy of Sciences
Studies of antimicrobial resistance in rare mycobacteria from a nosocomial environment
Pereira SG, 2019. BMC Microbiology. 1. 19. 2019. http://dx.doi.org/10.1186/s12866-019-1428-4 . 10.1186/s12866-019-1428-4 . published BMC Microbiology
Molecular Fingerprints for a Novel Enzyme Family in Actinobacteria with Glucosamine Kinase Activity
Manso JA, 2019. mBio. 2019. https://doi.org/10.1128/mBio.00239-19 . 10.1128/mBio.00239-19 . published mBio
The Microbiome-Mitochondria Dance in Prodromal Parkinson's Disease
Cardoso SM, Empadinhas N, 2018. Frontiers in Physiology. 9. 2018. https://www.frontiersin.org/articles/10.3389/fphys.2018.00471/full . 10.3389/fphys.2018.00471 . published Frontiers in Physiology
Production, crystallization and structure determination of a mycobacterial glucosylglycerate hydrolase
Cereija TB, 2017. Acta Crystallographica Section F Structural Biology Communications. 536 - 540. 9. 73. 2017. https://doi.org/10.1107%2Fs2053230x17012419 . 10.1107/S2053230X17012419 . published Acta Crystallographica Section F Structural Biology Communications
Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria
Farias PG, 2017. Antonie van Leeuwenhoek. 863 - 876. 7. 110. 2017. http://dx.doi.org/10.1007/s10482-017-0857-z . 10.1007/s10482-017-0857-z . published Antonie van Leeuwenhoek
Microbiota of Chronic Diabetic Wounds: Ecology, Impact, and Potential for Innovative Treatment Strategies
Pereira SG, 2017. Frontiers in Microbiology. 8. 2017. https://doi.org/10.3389%2Ffmicb.2017.01791 . 10.3389/fmicb.2017.01791 . published Frontiers in Microbiology
Glucosylglycerate metabolism, bioversatility and mycobacterial survival
Nunes-Costa D, 2016. Glycobiology. 213 - 227. 27. 2016. http://dx.doi.org/10.1093/glycob/cww132 . 10.1093/glycob/cww132 . published Glycobiology
The looming tide of nontuberculous mycobacterial infections in Portugal and Brazil
Nunes-Costa D, 2016. Tuberculosis. 107 - 119. 96. 2016. http://dx.doi.org/10.1016/j.tube.2015.09.006 . 10.1016/j.tube.2015.09.006 . published Tuberculosis
Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides
Maranha A; Clarke AJ, Empadinhas N, 2015. Scientific Reports. 1. 5. 2015. http://dx.doi.org/10.1038/srep13610 . 10.1038/srep13610 . published Scientific Reports
Structure of Mycobacterium thermoresistibile GlgE defines novel conformational states that contribute to the catalytic mechanism
Mendes V, 2015. Scientific Reports. 1. 5. 2015. http://dx.doi.org/10.1038/srep17144 . 10.1038/srep17144 . published Scientific Reports
Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway
Fraga JS, 2015. Scientific Reports. 5. 2015. https://doi.org/10.1038/srep08026 . 10.1038/srep08026 . published Scientific Reports
Autophagy in the fight against tuberculosis
Bento CF, 2014. DNA and Cell Biology. 228 - 242. 4. 34. 2014. https://doi.org/10.1089/dna.2014.2745 . 10.1089/dna.2014.2745 . published DNA and Cell Biology
Mycobacterium hassiacum recovers from nitrogen starvation with up-regulation of a novel glucosylglycerate hydrolase and depletion of the accumulated glucosylglycerate
Alarico S, 2014. Scientific Reports. 1. 4. 2014. http://dx.doi.org/10.1038/srep06766 . 10.1038/srep06766 . published Scientific Reports
The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies
Nobre A, 2014. Microbiology (United Kingdom). 1547 - 1570. PART 8. 160. 2014. https://doi.org/10.1099/mic.0.075895-0 . 10.1099/mic.0.075895-0 . published Microbiology (United Kingdom)
A new bacterial hydrolase specific for the compatible solutes alpha-D-mannopyranosyl-(1,2)-D-glycerate and alpha-D-glucopyranosyl-(1,2)-D-glycerate
Alarico S, 2013. Enzyme and Microbial Technology. 77 - 83. 2. 52. 2013. http://dx.doi.org/10.1016/j.enzmictec.2012.10.008 . 10.1016/j.enzmictec.2012.10.008 . published Enzyme and Microbial Technology
The plant Selaginella moellendorffii possesses enzymes for synthesis and hydrolysis of the compatible solutes mannosylglycerate and glucosylglycerate
Nobre A, 2013. Planta. 891 - 901. 3. 237. 2013. https://doi.org/10.1007/s00425-012-1808-6 . 10.1007/s00425-012-1808-6 . published Planta
Genome sequence of Mycobacterium hassiacum DSM 44199, a rare source of heat-stable mycobacterial proteins
Tiago I, 2012. Journal of Bacteriology. 7010 - 7011. 24. 194. 2012. DOI: https://doi.org/10.1128/JB.01880-12 . 10.1128/JB.01880-12 . published Journal of Bacteriology
Biosynthesis of mycobacterial methylglucose lipopolysaccharides
Mendes V, 2012. Natural Product Reports. 834 - 844. 8. 29. 2012. https://doi.org/10.1039/C2NP20014G . 10.1039/c2np20014g . published Natural Product Reports
Functional and structural characterization of a novel mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus reveals its dual substrate specificity
Empadinhas N, 2011. Molecular Microbiology. 76 - 93. 1. 79. 2011. https://doi.org/10.1111/j.1365-2958.2010.07432.x . 10.1111/j.1365-2958.2010.07432.x . published Molecular Microbiology
Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis
Mendes V, 2011. Scientific Reports. 1. 1. 2011. http://dx.doi.org/10.1038/srep00177 . 10.1038/srep00177 . published Scientific Reports
Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea
Empadinhas N, da Costa MS, 2011. Environmental Microbiology. 2056 - 2077. 8. 13. 2011. https://doi.org/10.1111/j.1462-2920.2010.02390.x . 10.1111/j.1462-2920.2010.02390.x . published Environmental Microbiology
Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis
Fernandes C, 2010. Journal of Bacteriology. 1624 - 1633. 6. 192. 2010. https://doi.org/10.1128/JB.01424-09 . 10.1128/JB.01424-09 . published Journal of Bacteriology
Biochemical characterization of the maltokinase from Mycobacterium bovis BCG
Mendes V, 2010. BMC Biochemistry. 2010. https://doi.org/10.1186/1471-2091-11-21 . 10.1186/1471-2091-11-21 . published BMC Biochemistry
Identification of the mycobacterial glucosyl-3-phosphoglycerate synthase
Empadinhas N, 2008. FEMS Microbiology Letters. 195 - 202. 2. 280. 2008. https://doi.org/10.1111/j.1574-6968.2007.01064.x . 10.1111/j.1574-6968.2007.01064.x . published FEMS Microbiology Letters
Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus
Sá-Moura B, 2008. Acta Crystallographica Section F: Structural Biology and Crystallization Communications. 760 - 763. 8. 64. 2008. https://doi.org/10.1107/S1744309108021490 . 10.1107/S1744309108021490 . published Acta Crystallographica Section F: Structural Biology and Crystallization Communications
A Unique Combination of Genetic Systems for the Synthesis of Trehalose in Rubrobacter xylanophilus: Properties of a Rare Actinobacterial TreT
Nobre A, 2008. Journal of Bacteriology. 7939 - 7946. 24. 190. 2008. http://dx.doi.org/10.1128/jb.01055-08 . 10.1128/jb.01055-08 . published Journal of Bacteriology
Osmoadaptation mechanisms in prokaryotes: Distribution of compatible solutes
Empadinhas N, da Costa MS, 2008. International Microbiology. 151 - 161. 3. 11. 2008. https://europepmc.org/article/med/18843593 . 10.2436/20.1501.01.55 . published International Microbiology
Mycobacterium tuberculosis glucosyl-3-phosphoglycerate synthase: Structure of a key enzyme in methylglucose lipopolysaccharide biosynthesis
Pereira PJB, 2008. PLoS ONE. 11. 3. 2008. https://doi.org/10.1371/journal.pone.0003748 . 10.1371/journal.pone.0003748 . published PLoS ONE
Molecular and physiological role of the trehalose-hydrolyzing a-glucosidase from Thermus thermophilus HB27
Alarico S, 2008. Journal of Bacteriology. 2298 - 2305. 7. 190. 2008. http://www.scopus.com/inward/record.url?eid=2-s2.0-41549086172&partnerID=MN8TOARS . 10.1128/JB.01794-07 . published Journal of Bacteriology
To be or not to be a compatible solute: Bioversatility of mannosylglycerate and glucosylglycerate
Empadinhas N, da Costa MS, 2008. Systematic and Applied Microbiology. 159 - 168. 3. 31. 2008. https://doi.org/10.1016/j.syapm.2008.05.002 . 10.1016/j.syapm.2008.05.002 . published Systematic and Applied Microbiology
Single-step pathway for synthesis of glucosylglycerate in Persephonella marina
Fernandes C, 2007. Journal of Bacteriology. 4014 - 4019. 11. 189. 2007. http://www.scopus.com/inward/record.url?eid=2-s2.0-34249786874&partnerID=MN8TOARS . 10.1128/JB.00075-07 . published Journal of Bacteriology
Organic solutes in Rubrobacter xylanophilus: The first example of di-myo-inositol-phosphate in a thermophile
Empadinhas N, 2007. Extremophiles. 667 - 673. 5. 11. 2007. http://www.scopus.com/inward/record.url?eid=2-s2.0-34548303944&partnerID=MN8TOARS . 10.1007/s00792-007-0084-z . published Extremophiles
Mannosylglycerate is essential for osmotic adjustment in Thermus thermophilus strains HB27 and RQ-1
Alarico S, 2007. Extremophiles. 833 - 840. 6. 11. 2007. http://www.scopus.com/inward/record.url?eid=2-s2.0-35748948644&partnerID=MN8TOARS . 10.1007/s00792-007-0106-x . published Extremophiles
Glucosylglycerate biosynthesis in the deepest lineage of the Bacteria: Characterization of the thermophilic proteins GpgS and GpgP from Persephonella marina
Costa J, 2007. Journal of Bacteriology. 1648 - 1654. 5. 189. 2007. http://www.scopus.com/inward/record.url?eid=2-s2.0-33947366922&partnerID=MN8TOARS . 10.1128/JB.00841-06 . published Journal of Bacteriology
Bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol: Inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles
Rodrigues MV, 2007. Journal of Bacteriology. 5405 - 5412. 15. 189. 2007. http://www.scopus.com/inward/record.url?eid=2-s2.0-34547629796&partnerID=MN8TOARS . 10.1128/JB.00465-07 . published Journal of Bacteriology
Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii
Costa J, 2006. Journal of Bacteriology. 1022 - 1030. 3. 188. 2006. http://www.scopus.com/inward/record.url?eid=2-s2.0-31344453995&partnerID=MN8TOARS . 10.1128/JB.188.3.1022-1030.2006 . published Journal of Bacteriology
Diversity and biosynthesis of compatible solutes in hyper/thermophiles
Empadinhas N, da Costa MS, 2006. International Microbiology. 199 - 206. 3. 9. 2006. http://www.scopus.com/inward/record.url?eid=2-s2.0-33750584278&partnerID=MN8TOARS . published International Microbiology
Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species
Pires AL, 2005. FEMS Microbiology Letters. 39 - 45. 1. 245. 2005. http://www.scopus.com/inward/record.url?eid=2-s2.0-15744405109&partnerID=MN8TOARS . 10.1016/j.femsle.2005.02.011 . published FEMS Microbiology Letters
Distribution of genes for synthesis of trehalose and mannosylglycerate in Thermus spp. and direct correlation of these genes with halotolerance
Alarico S, 2005. Applied and Environmental Microbiology. 2460 - 2466. 5. 71. 2005. http://www.scopus.com/inward/record.url?eid=2-s2.0-18444382346&partnerID=MN8TOARS . 10.1128/AEM.71.5.2460-2466.2005 . published Applied and Environmental Microbiology
A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase
Empadinhas N, 2004. Journal of Bacteriology. 4075 - 4084. 13. 186. 2004. http://www.scopus.com/inward/record.url?eid=2-s2.0-3042523198&partnerID=MN8TOARS . 10.1128/JB.186.13.4075-4084.2004 . published Journal of Bacteriology
Specialized Roles of the Two Pathways for the Synthesis of Mannosylglycerate in Osmoadaptation and Thermoadaptation of Rhodothermus marinus
Borges N, 2004. Journal of Biological Chemistry. 9892 - 9898. 11. 279. 2004. http://www.scopus.com/inward/record.url?eid=2-s2.0-1642279326&partnerID=MN8TOARS . 10.1074/jbc.M312186200 . published Journal of Biological Chemistry
The Bacterium Thermus thermophilus , Like Hyperthermophilic Archaea, Uses a Two-Step Pathway for the Synthesis of Mannosylglycerate
Empadinhas N, 2003. Applied and Environmental Microbiology. 3272 - 3279. 6. 69. 2003. http://dx.doi.org/10.1128/aem.69.6.3272-3279.2003 . 10.1128/aem.69.6.3272-3279.2003 . published Applied and Environmental Microbiology
Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. Infect Protozoa and Require Activated Charcoal for Growth in Laboratory Media
Santos P, 2003. Applied and Environmental Microbiology. 6533 - 6540. 11. 69. 2003. http://www.scopus.com/inward/record.url?eid=2-s2.0-0242573382&partnerID=MN8TOARS . 10.1128/AEM.69.11.6533-6540.2003 . published Applied and Environmental Microbiology
Rubritepida flocculans gen. nov., sp. nov., a New Slightly Thermophilic Member of the a-1 Subclass of the Proteobacteria
Alarico S, 2002. Systematic and Applied Microbiology. 198 - 206. 2. 25. 2002. http://dx.doi.org/10.1078/0723-2020-00116 . 10.1078/0723-2020-00116 . published Systematic and Applied Microbiology
Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum
Albuquerque L, 2002. Applied and Environmental Microbiology. 4266 - 4273. 9. 68. 2002. http://www.scopus.com/inward/record.url?eid=2-s2.0-0036729238&partnerID=MN8TOARS . 10.1128/AEM.68.9.4266-4273.2002 . published Applied and Environmental Microbiology
Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii: Biochemical and genetic characterization of key enzymes
Empadinhas N, 2001. Journal of Biological Chemistry. 43580 - 43588. 47. 276. 2001. http://www.scopus.com/inward/record.url?eid=2-s2.0-0035941355&partnerID=MN8TOARS . 10.1074/jbc.M108054200 . published Journal of Biological Chemistry
Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus. Biochemical and genetic characterization of a mannosylglycerate synthase
Martins LO, 1999. Journal of Biological Chemistry. 35407 - 35414. 50. 274. 1999. http://www.scopus.com/inward/record.url?eid=2-s2.0-0033544948&partnerID=MN8TOARS . 10.1074/jbc.274.50.35407 . published Journal of Biological Chemistry
5 77 de 77 Publicações
AMRFight - Explorando interações bacterianas à procura de novas moléculas para combater o flagelo da resistência antimicrobiana
2023-04-01
O Eixo Intestino-Sistema Imune-Cérebro na Doença de Parkinson
2021-01-20
Um polissacarídeo micobacteriano intrigante: reciclagem, replicação e mais
2018-06-15
Prémio Thomé-Villar, Sociedade Portuguesa de Pneumologia/Boehringer Ingelheim
Prémio Santa Casa Neurociências Mantero Belard, Santa Casa da Misericórdia de Lisboa
19th Exploratory Research Grant, Mizutani Foundation for Glycoscience, Japan
Pfizer Award Basic Research, Sociedade de Ciências Médicas de Lisboa & Pfizer, Portugal
Sociedade de Ciências Médicas de Lisboa & Pfizer, Portugal
Este website utiliza cookies para melhorar a sua experiência.